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Abstract

A holistic approach to the algorithm selection problem is presented. The “algo-

rithm selection framework” uses a combination of user input and meta-data to stream-

line the algorithm selection for any data analysis task. The framework removes the

conjecture of the common trial and error strategy and generates a preference ranked

list of recommended analysis techniques. The framework is performed on nine analy-

sis problems. Each of the recommended analysis techniques are implemented on the

corresponding data sets. Algorithm performance is assessed using the primary metric

of recall and the secondary metric of run time. In six of the problems, the recall of

the top ranked recommendation is considered excellent with at least 95 percent of

the best observed recall; the average of this metric is 79 percent due to two poorly

performing recommendations. The top recommendation is Pareto efficient for three

of the problems. The framework measures well against an a-priori set of criteria. The

framework provides value by filtering the candidate of analytic techniques and, often,

selecting a high performing technique as the top ranked recommendation. The user

input and meta-data used by the framework contain information with high potential

for effective algorithm selection. Future work should optimize the recommendation

logic and expand the scope of techniques for other types of analysis problems. Further,

the results of this proposed study should be leveraged in order to better understand

the behavior of meta-learning models.

iv
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AFIT/ENS ALGORITHM SELECTION FRAMEWORK:

A HOLISTIC APPROACH TO THE ALGORITHM SELECTION PROBLEM

I. Introduction of the Problem

1.1 Introduction to Operations Research

Operations research (OR) emerged during World War II as the British military

tasked scientists to develop a disciplined approach to problem solving. The modern

definition of OR is the science of determining the best decision under a constrained

system in order to optimize a goal. OR projects typically incorporate mathematical

modelling, a quantitative representation of a real-world system [1].

1.2 Rise of Meta-models

There are three overarching approaches to developing mathematical models: physics

based, data-driven, and a hybrid. Physics based models are used when the underlying

nature of the system is well understood. They require well refined parameter settings

in order for the model to be useful and they may be computationally expensive to

execute. The hybrid approach to modelling requires some system expertise to prop-

erly employ, however, it also leverages system data to formulate the model. Finally,

data driven models are produced solely from system data without regard to system

knowledge. Data driven models are also known as meta-models because they are a

higher abstraction of the relationship between systems input and response [2]. An

overview of predominant meta-models is presented in Chapter 2.

Learning algorithms may be used to formulate a meta-model. Selection of the best

1
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learning algorithm, including hyper-parameters, for a particular problem instance is

a difficult and time consuming task [3]. [4] has confirmed conclusions of [5] and [6]

that meta-models’ performance varies among problem types and problem instances.

[7] uses The Extended Bayesian Formalism to show that given a set of learning al-

gorithms and problems, each algorithm will outperform the others for some (equally

sized) subset of problems. This phenomena has driven researchers to a trial-and-error

strategy of identifying the best meta-model for a given problem. The preferred meta-

model is selected by comparison of model performance metrics such as accuracy [2].

Unfortunately, the computational run time and human investment required to select

a learning algorithm by trial-and-error is generally prohibitive of finding the optimal

choice.

1.3 Problem Statement

Cui et al. successfully implemented a meta-learning approach within Rice’s frame-

work [8] for “The Algorithm Selection Problem.” This paper explores an alternate

yet related approach to the algorithm selection problem. Within, an approach is pre-

sented that builds on Rice’s framework by employing rules of thumb, inspired either

by literature or developed independently. The research problem is to create an algo-

rithm selection technique for the human analysts that also develops the theoretical

intuition for meta-learners by characterizing the problem and referencing a taxon-

omy of analysis techniques. A primary goal of this paper is to explore the nature

of tangible recommendation systems in order to understand black box recommen-

dation systems such as [2]. Further, the paper will identify whether components of

the new system can be combined with meta-learners to automatically provide better

recommendations.

2
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1.4 Overview of Contents

Chapter 2 of this thesis provides a review of previous work in meta-learning and

introduces the applicable meta-models and their performance metrics. Chapter 3 out-

lines the methodology used to demonstrate the metrics in the meta-learning recom-

mendation framework. The criteria for an acceptable solution is discussed in Chapter

3. Chapter 4 presents the experimental results and Chapter 5 draws conclusions from

the research and suggests areas for future work.

3
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II. Literature Review

2.1 Machine Learning

[9] presented a breakthrough to the artificial intelligence community in 1957 by

publishing a mathematical model of a neuron. This model, called the perceptron,

could be trained to detect patterns in data, in turn automating decisions. In 1969,

[10] published influential findings that machine learning methods, notably percep-

trons, were incapable of performing complex classification tasks. This news discour-

aged advancements in the artificial intelligence field until 1986 when [11] succeeded

to show the excellent performance of backwards propagating neural networks. The

introduction of the backwards propagating neural network marks the beginning of

the modern era in machine learning. Today, machine learning algorithms are used to

perform a variety of real world problems ranging from speech recognition [12] to mili-

tary search and rescue [13]. The United States Department of Defense recognizes the

military applications of machine learning. In fact, the 2018 National Defense Strat-

egy calls for accelerated modernization of advanced autonomous systems, to include

artificial intelligence and machine learning in order to achieve a competitive military

advantage over adversaries [14].

2.2 The Taxonomy of Analysis Techniques

Many analysts in industry and academia have offered taxonomies to categorize

and describe analysis techniques. These products communicate the capabilities and

limitations of techniques and group them by a common trait. Taxonomies in the

literature vary by size, format, intended audience, and purpose. Two existing tax-

onomies are referenced within due to their wide scope, high level of refinement, and

possible application to the algorithm selection problem. [15] shows that the algorithm

4
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recommendation system is closely linked to the taxonomy.

Field Guide to Anlaysis.

This taxonomy is also very comprehensive, addressing techniques related to clas-

sical statistics, statistical learning, machine learning, simulation, optimization, and

operations research. The techniques are categorized by the types of problems they

solve. [15] demonstrated that a thorough framework relies on comprehensive taxon-

omy.

[15] presents Learning techniques as one of three classes within the universe of data

analytics. The highest level of discrimination within the class of learning algorithms

is the category of analysis. Learning analytics are broken into three categories: re-

gression, clustering, and classification [15]. Regression algorithms assign a continuous

numerical response to each input data point. Clustering and classification algorithms

assign a class membership to each data point. Clustering techniques follow an unsu-

pervised learning style and classification follows a supervised learning style [16].

Learning techniques may be categorized into three learning styles: unsupervised,

supervised and semi-supervised. Unsupervised learning models are used when no

prior information of class membership is available. The supervised learning approach

utilizes a training data set in which all observations are labeled with membership.

Semi-supervised learning models are ideal when only some observations contain labels.

These models yield more accurate results than unsupervised methods [15].

Offline, reinforcement, and online are the three training styles. An offline training

style describes methods for which all training is performed in one training event.

Alternatively, online models are trained additively in subsequent training events each

of which update the model. Although an online model is deployed once, it may

improve over time as it gains experience such as feedback on its prior performance.

5
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Reinforcement learning is a special case of online learning. This training style adapts

to features in its environment continuously. The model learns to respond to achieve

long term goals by responding to changes in the environment. Advancements in deep

learning has allowed reinforcement learning to impact dynamic optimization problems

such as day trading and navigation [15].

McGarigal.

[17] offers a taxonomy which discriminates techniques by the form data is input

and output from the model. According to theory, the form of the model output

indicates the type of problems the technique can effectively solve. Accordingly, the key

to algorithm selection lies in understanding capabilities of each algorithm in respect

to problem characteristics, analysis objectives, data compatibility, data sampling,

and the underlying mathematical structure of the model. This taxonomy seeks to

provide such information. The taxonomy however was limited to classical statistics

and statistical learning techniques.

2.3 Algorithm Selection Frameworks

Booz Allen Hamilton.

[15] asserts that algorithm selection is an art and not a mechanical “repeatable pro-

cess.” Further, each analysis problem contains “hidden dependencies or constraints”

that require human judgment to mitigate. The process leverages a fractal analytical

model to decompose features of the overarching analysis problem into smaller, more

tangible analysis problems. The factors of the fractal analytical model are data, goal,

and action. Practitioners apply the fractal decomposition process until a specific

analytic technique is identified. The process relies on analyst judgment to select ana-

lytical techniques. The fractal decomposition model is supplemented by five guiding

6
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factors: “compound analytic goals that create natural segmentation natural order-

ings of analytic goals, data types that dictate processing activities, requirements for

human-in-the-loop feedback, need to combine multiple data sources.” [15]

Big Data Sources.

[18] provides an algorithm selection framework that emphasizes data compatibility.

Increasingly, data is drawn from non-conventional sources such as urban sensors,

websites, and mobile applications. In fact 95 percent of big data is unstructured

and is obtained in various volumes, velocities, varieties, and veracities. [18] provides

guidance on how to analyze such data. Fist, data governance layer is a construct

that describes physical, legal, and ethical ability to obtain and use data. Next, the

data analysis layer provides guidance to store, integrate, pre-process, and analyze

data as well as publish the results. Finally, the persistence layer describes the need

to maintain and update the data over a long time horizon.

INFORMS Body of Knowledge.

[19] affirms that algorithm selection is crucial for effective analysis, however, the

source sidesteps providing any specific strategy. The major contribution from the

Body of Knowledge is linking categories of analysis to characteristics of a problem.

Techniques within the category descriptive analysis explore patterns and trends of

historical data. These techniques answers the question “what happened?” with tools

such as summary reports, visualizations, and models. Predictive techniques antic-

ipate trends in the future. These techniques address “what could happen?” with

statistical methods and data mining methods including machine learning. The most

sophisticated models, albeit insightful analysis, belong to the category prescriptive

analysis. These techniques identify ways to change actions and improve operational

7
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outcomes [19]. Evidently, techniques fall within categories of analysis and problems

can be characterized by these categories.

2.4 Classification Techniques

Classification is a supervised machine learning task which seeks to associate input

data to its true class, when the set of all classes is known a priori. The general proce-

dure for constructing a classification model includes two step: building the classifier

model from training data, and evaluating the model with test data. Only once the

model is shown to perform adequately in the test data set should it be used to make

new predictions.

The construction of the classifier is sometimes referred to as the learning step. The

training set for the learning step consists of a database of ordered tuples, referred to

as X, and label attribute, A, associated with each tuple. The label attribute, A, is a

nominal variable which dictates the true class of each tuple in X [16].

Support Vector Machine.

Support Vector Machine (SVM) is a supervised learning classification technique

proposed by [20] in 1992. Since its publication, SVM has become extremely popular

for its outstanding performance classifying records in comparison to more computa-

tionally costly methods such as neural networks [21].

The SVM model is trained to fit a separating hyperplane to distinguish obser-

vations training data by class membership. The hyperplane serves as a decision

boundary to predict the class of unobserved data points. SVM decision boundaries

are resistant to training bias because the loss function, which drives separating hy-

perplane, minimizes classification error and maximizes the buffer between points in

each class [20].

8
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Any labelled data sets which are not linearly separable can be mapped to a higher

dimension where linear separation is possible using a Kernel function. Proper selection

of the Kernel ensures a model that classifies well, but is not overly complex and

therefore biased. The SVM problem which incorporates a kernel transformation can

be solved very efficiently using Lagrangian optimization[21].

Multi-class categorization, in which observations may belong to one of n nominal

classes, and multi-label categorization in which an entity can simultaneously belong

to multiple classes, are both extensions to SVM of the base SVM. [21]

K-Nearest Neighbor.

K-nearest neighbor was first demonstrated in the early 1950’s however it wasn’t

until the 1960s that advancements in computing technology allowed the technique to

be employed for pattern recognition on larger data sets. The method compares an

unlabeled tuples to labelled tuples in the training set according to a distance metric

such as euclidean distance. The unlabeled tuple is assigned the most frequently en-

countered label among the k nearest labelled tuples according to the metric. Nominal

attributes must be converted to numerical values via one hot encoding. The value

of k is generally set to one and attractively increased until desirable classification

performance is achieved. Therefore, training a K-nearest neighbor model is compu-

tationally intensive. Some algorithms train on sub-samples of the available data to

save time. K-nearest neighbor is also robust to missing data by making assumptions

about the distance for missing attributes [16]. According to [16], Equation 1 provides

the n-dimensional euclidean distance between tuple X1 and X2 as

dist(X1, X2) =

√√√√ n∑
i=1

(x1i − x2i)2. (1)

9
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The Näıve Bayes algorithm.

The Näıve Bayes Classifier algorithm warrants special attention due to its high

performance which rivals neural networks and decision trees in some applications.

The Näıve Bayes learner is designed to determine the best hypothesis h from a space

H hypotheses given the observed data D. In the context of classification h is a

hypothesized class and D is a training set. The algorithm searches all hypotheses in

H for the hypotheses with the greatest value P (h|D) which is known as the maximum

a posteriori [12].

The Näıve Bayes Classifier models the likelihood of each hypothesis under all

observed attribute settings. For each unobserved tuple, the model predicts the most

likely target v ∈ V associated with an unlabeled tuple with attributes 〈a1, a2, ...an〉.

The target v corresponding to the greatest likelihood for a record is the predicted

class [12].

The probability of each target h ∈ H is easily calculated for a given data set. It

is impractical, however, to solve for P (a1, a2, ...an|hj) because most training sets do

not contain sufficient instances of a1, a2, ...an to drive an estimate of P (a1, a2, ...an|hj)

with good confidence. Therefore, it is necessary to make the näıve assumption that

values of the attributes are conditionally independent of for the given class target, v.

This statement of conditional independence is expressed mathematically in Equation

2.

P (a1, a2, ...an|vj) =
∏
i

P (ai|vj) (2)

Equation 3 shows that the Naive Bayes classifier determines the hypothesized

target class of maximum likelihood given a set of attributes.

hNB = argmaxhj∈V P (hj)P (ai|hj) (3)

10
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[12]

Decision Trees.

Decision trees are a supervised classification technique that partitions training

records into branches based on the attributes which contain the most predictive in-

formation. The objective during training is to partition observations until each par-

tition is pure, that is it contains observations of only one class. The structure of the

partitioning is known as a decision tree, and the decision tree generated from training

data is used to classify unlabeled observations. The technique is popular because it

performs well in many applications and the model is intuitive to interpret. According

to [16], Decision tree methods were developed in parallel by two groups in the late

1970’s into the 1980’s, namely [22] and [23]. Each algorithm follows a similar clas-

sification strategy but differs in the attribute selection heuristic [16]. Decision trees

are commonly applied in fields such as biology, engineering, chemistry, finance, and

medical research, [24] and may be performed using both categorical and continuous

attributes [16]. The two predominant strategies for attribute selection are the Gini

Criterion which was introduced in [23] and Information Gain which was introduced

in [22]. The Gini Criterion branches on the attribute which minimizes impurity in

the resulting partitions [23] and the Information Gain heuristic splits on the attribute

which maximizes the information gained at a branch. Information is a quantification

of the tree’s failure to provide pure classifications [22]. [16] provides analysis of the

strengths and weaknesses for each attribute selection method.

Multi-layer Perceptron.

There are many varieties of artificial neural networks. The rudimentary feed

forward perception model was introduced in [9]. The features common to a feed
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forward ANN include layered sets of nodes (also called neurons) connected by arcs.

The connected structure of the network is known as its topography. Nodes that define

the topography are organized into layers, or neurodes. Data features from the input

data are processed through the input layer. Each node in the input layer performs a

function, known as the activation function, on the inputs. The weighted outputs of

this layer are the input of the nodes of the next neurode. Equation 4 demonstrates

that the input value of node j is the weighted sum of the outputs of all connected

nodes in the preceding neurode i, plus a bias scalar, θ, which is a free variable [16].

Ij =
∑
i

wij ·Oi + θj (4)

The backwards propagating neural network, introduced in 1986 by [11], is a more

advanced model that communicates error information to predecessor neurodes. The

backwards propagating ANN overcomes learning limitations of the feed forward ANN.

ANN models are robust to errors in training data. Although training times may be

high for large data sets, trained models are evaluated very quickly. Often, it is

impossible, albeit unnecessary, for a human to interpret meaning from the weights

assigned to a trained ANN. Therefore, ANN is considered a black box classification

technique [12].

2.5 Regression Techniques

Regression is a statistical method that estimates a relationship between predictor

variables and response variables. Regression estimates each predictor variable’s con-

tribution to a response by generating a coefficient for each predictor. Some regression

estimate interaction coefficients, that is multiple variable’s combined contribution to

the response. The best regression models are shown to follow the theoretical true re-

lationship between the predictor variables and response, sometimes called the physics
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model. Even the true model fails to predict noise, or random deviations from the

model. Regardless, regression is an effective approach for predicting event outcome

and for many fields of science and engineering. Under the strong assumption of causal

relationship, regression can be used for controlling engineering systems [25].

Support Vector Regression.

[26] introduced support vector regression (SVR) as an extension of SVM meth-

ods. The SVR algorithm produces a function F (x) which models G(x), the true

relationship between predictor data point x and the response, y.

F (X, ŵ) is a reparameterization of F whereŵ is the normal vector defining the

optimal hyperplane, and x is once again a point in the input space.

Equation 5 is common choice of F which takes the form

F1(X, ŵ) = zt · ŵ, (5)

where zt is defined in Equation 6 by

zt = [x21, ..., x
2
d, ..., xixj, ...xd−1xd, x1, ..., xd, 1], (6)

for all d ∈ {1...N}. The number of features in z is defined in Equation 7 as the

combinatorial expression in

f =

p+d−1∑
i=d−1

Ci
d−1 (7)

[27] proposes an alternative form of F in Equation as 8 where

F2(X, ŵ) =
N∑
j=1

(αi ∗ −αi∗)(vtix+ 1)p + b, (8)
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such that αi∗, αi∗ and b are free variables and p indicates the order of the poly-

nomial model.

The goal is to select ŵ, the optimal normal vector such that F (x, ŵ) is the best

possible estimate of G(x). To do so, a loss function, is introduced, for example, L

such that L[·] = [·]2. In this case, Equation 9 shows the primal objective function of

SVR is defined as the quadratic

U
N∑
j=1

L[yj − F (vj, ŵ)] + ||ŵ||2, (9)

where U is a regularizer constant vi are support vectors, ie.input data points which

fall outside of the acceptable buffer region. yi are the corresponding observed values to

G(x) including noise. The regularizer constant is a tunable hyperparameter that sets

the relative importance of reducing prediction error verse generalizing the function.

Geometrically, the first term is the sum of squares between predicted response and

observed value of the response; the second term is the distance between the F and

the boundary of the acceptable buffer region.

Linear Regression.

Simple linear regression is a technique used to model one predictor variable’s

relationship to a single response variable. y denotes the predicted response variable,

β0 denotes the estimated intercept, β1 denotes the estimated regression coefficient for

the estimator variable, and x denotes the input data point. β0 and β1 are commonly

estimated using the method of least squares [25]. The simple linear regression formula,

Equation 10, predicts the response value as a function of the predictor variable on

the surface of a line

y = β0 + β1x+ ε (10)
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The multiple regression model with k predictor variables and interaction terms

can also be generated using the method of least squares. This type of model, seen in

Equation 11 follows the same form as the simple regression model with the additional

predictor variable terms.

y = β0 + β1x1 + β2x2 + ...+ βkxk + ε (11)

The multiple linear regression formula predicts the response value as a function of

all predictor variables on the surface of a hyperplane. The addition of the interaction

term in Equation 12 yields a more complex multiple regression model

y = β0 + β1x1 + β2x2 + ...+ β12x1x2 + ...+ ε. (12)

A regression models should always be built according to the principle of parsimony,

that is with the minimum order function that represents the data and contextual

knowledge of the system. A simple model is always preferred to a complex model.

In the case of a curvilinear relationship between predictor and response variables, a

transformation may mitigate the need for increasing the order of the model [25].

2.6 Clustering Techniques

Clustering is the unsupervised approach to machine learning which partitions ob-

served data points into groups, or clusters, based on perceived similarities. In contrast

to classification techniques, the clustering approach to machine learning can be per-

formed on unlabeled data. It has been described as “automatic classification” because

analyst does not require domain knowledge or knowledge of class characteristics or

grouping logic. Some algorithms do require the number of desired clusters as an in-

put. Clustering is commonly used to identify outlier data points. Clustering has been
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applied successfully to management science, information security, medicine, and web

search [16].

Distance metrics such as euclidean distance quantify the similarity of points in a

data set. Clustering algorithms use four methods, partitioning, hierarchical, density

based, and grid based, to assign tuples to the correct cluster. See chapter 10.1 of [16]

for detailed comparison of these methods.

Clustering techniques generally perform well on a range of data types including

nominal, ordinal, and binary. Recent research has shown potential applications with

less conventional data such as “graphs, sequences, images, and documents”. Some

clustering techniques such as partitioning generate only spherical decision boundaries

while others such as hierarchical are more robust to an arbitrary decision surface.

Although clustering techniques typically handle high dimensional data, analysts must

use caution to avoid biased results due to inclusion of immaterial factors [16].

K-Means.

The K-means clustering algorithm is the most fundamental algorithm among par-

titioning clustering methods. Initially, all observations ∈ D are randomly assigned to

k clusters. The centroid, ci, of each cluster, Ci, is typically calculated as either the

m-dimensional mean or medioid of all points in Ci. The algorithm seeks to minimize

the within-cluster variation for all Ci ∈ D. This is an NP-hard problem that can be

approximately solved using a greedy heuristic. At each iteration, observations p are

reassigned to the nearest centroid, and the centroid location is updated. This process

is repeated until a stopping criteria is met [16].
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2.7 Data Reduction Techniques

The Curse of dimensionality describes a data set which contains too many vari-

ables to be interpretable or useful for analysis [28]. Data reduction can be used during

pre-processing to reduce the time complexity of algorithms that increase rapidly with

the number of variables [28]. Data reduction methods are used to reduce the number

of variables in the data while retaining the integrity of the information represented.

If any information is lost, the data reduction is described as lossy. If the original

data can be regenerated fully from the compressed data, the compression is known

as lossless [16]. Data reduction also improves results when the number of variables

is nearly as great as the number of observations or when there is high correlation

among variables [28]. Principal component analysis is among the most widely used

ordination technique and is discussed below.

Principal Component Analysis.

Principle component analysis (PCA) is a multivariate technique which describes

the variance present in the original variables in a new set of orthogonal components.

The algorithm performs a change of basis operation which identifies the basis which

contains the most information in the fewest dimensions. It works especially well when

there is multicollinearity present in the original data. The ideal outcome of PCA is

that a small subset of the new components, the principal components, contain enough

information that the remainder of components can be omitted from the model. The

result of PCA can be used as an exploratory tool to determine underlying trends in a

system. For example, an economist may use PCA to determine the key sectors that

serve as an indicator of a greater economic behavior [28]. The steps to perform PCA

are outlined in Equation 13.
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C = XTX (13)

If the variables of the input data are presented in drastically different scales, the

correlation matrix should be used instead of covariance matrix. The eigenvecters

of C are generated by eigenvalue decomposition. The eigenvectors vi are arranged

into matrix A in order of descending eigenvalues, λi, where the eigenvalue quantifies

the variance explained in each new component i [13]. The proportion of variance

explained by each of k total components is expressed in Equation 14 as

λî
k∑

i=1

λi

. (14)

There are several acceptable methods to determine the number of retained princi-

pal components. Commonly, the number of principal components chosen is the fewest

that accounts for a predetermined proportion of retained variance. Alternatively, only

components that account for a greater than average amount of variance are retained.

Another common method is to plot the eigenvalues in descending order and selecting

a cutoff point at the elbow of the scree plot [28].

2.8 Performance Metrics for Machine Learning Techniques

Performance metrics are used to assess the quality of a classifying model and are

the basis of algorithm selection [16]. This section addresses how prominent perfor-

mance metrics are applied in the field of machine learning. These metrics are the

fundamental to assessing the performance of algorithm selection.
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Normalized Root Square Mean Error.

Normalized route mean square error is used to quantify the similarity between

the observed response yi ∈ Y and their predicted response ŷi [2]. Route mean square

error takes the same form as population standard deviation, a metric of the spread

in a data set; however, according to [29], RSME is distinguished in that the reference

point of comparison is an observed value and not the set’s mean. [2] proposes the

normalized root mean square error, shown in Equation 15, which is scaled by the

range of values in Y .

NRMSE =

√√√√√ 1

N

N∑
i=1

(ymax − ymin)
(15)

Area Under the Curve - Receiver Operator Curve.

Area under the curve - Receiver Operator Characteristic (AUC-ROC) was orig-

inally developed to convey the tradeoff between a true positive and a false positive

detection rate in radar systems during World War II. Today it is commonly used

to describe the performance of classification models [16]. Calculating AUC-ROC re-

quires that the model outputs the probability that each tuple belongs to each class.

Therefore this metric is naturally suitable for decision trees and Näıve Bayes Classi-

fiers, though it can be extended to other machine learning techniques. [30] has shown

precedent by successfully using AUC-ROC as a performance metric in meta-learners

[16].

To calculate AUC-ROC, tuples from the test data are sorted in descending order

of likelihood membership to positive class. Next, the true positive rate, also known

as sensitivity, is calculated as TP = TP
P

. The TP rate (TPR) is plotted as a function

of false positive rate FP = FP
N

. The curve begins at the vertical axis, TPR, where
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the horizontal axis is set to zero. A point is plotted at the origin. Iterating down

the sorted list, a point is plotted for each tuple. If the tuple is correctly labeled, the

points appear above the previous. If the tuple is incorrectly labeled, its corresponding

plot point appears to the right of the previous point [16]. [31] notes that since

there is an inverse relationship between TP and FP, the ROC plot indicates the

nature of the tradeoff. The ideal model would show a large TP at every value of FP

resulting in an AUC-ROC score of nearly 1.0. Conceptually, the AUC-ROC score is

probability that a classifier will rank a randomly chosen positive observation higher

than a randomly chosen negative observation. A score greater than 0.5 indicates that

the model classifies better than a random classifier. Identifying a desirable AUC-ROC

score is ultimately a business decision based on judgement [31] .

Algorithm Run Time.

An algorithm is defined as a process of discrete steps used to solve a specific prob-

lem. Algorithms typically perform operations on an input data and output a solution.

Complexity classes are metrics that quantify the computational performance of an

algorithm. Space complexity refers to the amount of memory the algorithm requires

to store data throughout each step. Space complexity is not a major concern in many

cases due to the large memory capacities in modern computers. Time complexity,

the duration required to complete a computing task is, however, a consideration for

algorithm selection [32]. Time complexity is typically defined within the construct of

a theoretical random access machine (RAM). The RAM counts every primitive op-

eration performed within an algorithm such as addition, multiplication, assignment,

ect. Running time, is the number of primitive operations required to perform all tasks

in an algorithm for a specific problem, and is closely related to time complexity. It is

assumed that running time for an algorithm of n primitive operations is cn, where c
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is a constant related to a computer’s rate of performing primitive operations. There

is variability however in running time of algorithms on equally sized problems. For in-

stance, a sorting algorithm may require fewer subroutines for a data set that is nearly

sorted than for a data set that is completely random. Therefore, Ω(n), pronounced

Big-Oh notation, is used to describe the worst case computational complexity of an

algorithm on any problem with size n. Computational complexity is the standard

proxy for runtime when comparing algorithm performance [32].

Accuracy.

Accuracy, sometimes referred to as recognition rate, provides the data analyst with

the overall proportion of correct classifications by a model. For a binary classification

problem we define the two classes as positive and negative. Accuracy is defined in

Equation 16 as the sum of true positive and true negative classifications divided by

the total number of observations which were classified [16].

A =
TP + TN

P +N
(16)

Alternatively, this information can be reported as the error rate where errorrate =

1− accuracy. The accuracy metric does not account for potential imbalance of pos-

itive and negative tuples in the test data [16]. Imagine 99% of tuples in the test set

are dogs, and 1% are cats. The model may correctly classify all dogs, and incorrectly

classify all cats but still reflect 99% accuracy. Optimizing a learning model via a loss

function related to accuracy may incentivize a base learning algorithm to develop a

bias toward the class of higher instances. In this case the balanced accuracy metric

is preferred because it is centered about each class [33]. [33] shows that balanced

accuracy can move beyond point estimates and provide confidence intervals of clas-

sification performance in the population of data sets. The formula for the commonly
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used point estimate is shown in Equation 17.

Aadj =
1

2
(AP + AN) (17)

Recall.

The recall, also known as sensitivity, of a classifier is the true positive rate of

detection for the positive class. The formula for sensitivity is shown in Equation 18.

recall =
TP

TP + FN
(18)

Unlike accuracy, which reflects the classifying performance for all classes, recall

reports performance for only one class which may be of particular importance. For

example, recall is of more importance than accuracy and balanced accuracy in a

model that predicts cancer because failure to identify a true positive tuple results

in an undiagnosed cancer patient. Similarly, specificity quantifies the rate of true

negatives [16]. It is defined by Equation 19.

specificity =
TN

TN + FN
(19)

Model dimensionality.

Incorporating superfluous complexity to an analytical model detriments its statis-

tical legitimacy and makes it difficult to interpret. A model with excessive complexity

will properly represent the training data but lacks the statistical properties to pre-

dict the response of unobserved [21]. [25] instructs that a [regression] model should

always be built to the least complexity that accurately represents the system. Note

that a regression model of n-1 polynomial terms can always be fit through n data

points. Although such a model will exhibit low error on the training data set, it does
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not represent the underlying nature of the system and does not serve as an effective

predictor [25].

Overfitting.

Overfitting is the phenomena characterized by an analytical model that is well

suited to describe the training data but is unable to perform well on data not observed

in the training set. Empirical risk is defined as the optimal value of the loss function

regularized by the number of observations in the set. Structural risk is defined as

the difference in the empirical risk yielded by the training data set and a test set. A

model is said to exhibit overfitting if the structural risk is very high. This indicates

the model lacks the underlying statistical nature of the data will perform poorly as a

predictor [21].

There are two causes of overfitting. First, a model with excessive complexity

tends to describe data well but is unable to effectively predict using any unseen data-

regardless of statistical similarities between training data set and validation data set.

Second, a model trained on data which lacks the required statistical information is

unable to predict with unseen data [21].

2.9 Meta Learning

Background of Meta-Learning.

Rice’s algorithm selection framework was presented in 1976 [8]. The framework

is performed by employing all algorithms under consideration on all problems in a

problem set. One or more performance metrics are chosen, and the performance of

each algorithm on each problem is reported. Upon completion of the process, the

preferred algorithm for each problem is taken as the one with the best performance

metrics [8]. [34] presents a modern depiction of Rice’s framework as phase 1 in figure
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1.

The classic approach of learning algorithms is known as base learning. That is a

machine learning algorithm which builds a data driven model for a specific applica-

tion [35]. Meta-learning however, is an approach introduced by [36] which algorithms

learn on the learning process itself. A meta-learning algorithm extracts meta-features

f(x) ∈ space F from a problem x ∈ problem space P . The meta-model is trained

to recommend the best known base learning algorithm a ∈ A to solve x. Addi-

tional works such as [37] and [38] further contributed to the theory of meta-learning

recommendation systems[35].

In 2014, [39] proposes the concept of applying meta-learning to Rice’s model. It

was not until 2016, however, that [2] implemented the concept. Figure 1 demon-

strates that Cui et al. trained a meta-learning model to correlate problem features

to algorithm performance and that the trained model could be used to recommend

the algorithm for unobserved problems within Rice’s framework. The meta-learner

correctly recommended the best algorithm in 91 percent of test problems. Further, it

demonstrated that time to perform algorithm selection could be reduced from minutes

to seconds compared to trial and error techniques [2].

Recent Work In Meta-Learning.

[40] proposed landmarking as a novel training strategy for metal learners. In lieu

of training via feature extraction, landmarking determines the geometrical location

of a problem instance in the space of all possible problems by testing each problem

instance’s performance against a baseline learning algorithm. The meta-learner rec-

ommends a learning algorithm to be paired with each actual problem instance. Initial

findings indicate some success, and may warrant future research [40].

Ler et al. has explored the use of clustering analysis to produce meta-features repre-
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Figure 1. The meta-learner adaptation of Rice’s framework [34]

sentative of data complexity. Ler shows that purity ratio, size distance, and volume

distance are representative of data complexity and that data complexity is correlated

to base learner performance [30]. Similar results were achieved by [41].

Evaluation of Recommendation System Performance.

Analysis is performed to rate the quality of the recommendation system based

on the performance metrics listed above. Evaluation of recommendation system per-

formance is a major driver for improving recommendation systems such as [2]. The

following techniques address this topic.

Spearman’s Rank Correlation Coefficient.

Spearman’s Rank Correlation Coefficient, Equation 20, is a measure of similarity

between two ranking schemes for members of a set [2]. [2] utilizes the Spearman’s

Rank Correlation Coefficient to measure agreement between the meta-learner’s pre-

dicted ranking of algorithms by performance and the observed algorithm ranking
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by performance for a problem. di is defined as the difference in assigned rank for

algorithm Ai and N is the number of elements i in I.

ρ = 1−
6

n∑
i=1

d2i

n(n2 − 1)
(20)

Perfect rank matching between two ranking schemes produces a SRC of 1, while

two opposite ranking schemes produces a SRC of -1, and two uncorrelated ranking

schemes are characterized by a SRC of 0. In the case that no ties are present, Spear-

man’s coefficient produces an equivalent value to the widely used Pearson’s correlation

coefficient when calculated for the ranking scheme, but Spearman’s is preferred due

to computational simplicity [42] and relaxed statistical assumptions [43]. Likewise,

Spearman’s coefficient is preferred in the case of moderate ties or many ties because

the difference in the two statistics is negligible [42].

Hypothesis testing is used to determine if the calculated correlation is statistically

significant. The null hypothesis states the paired random variates are mutually inde-

pendent, ie. the correlation is 0; the alternative hypothesis explicitly states the type

of dependency. “either (a) there is a tendency for the larger values of X to be paired

with the larger values of Y, or (b) there is a tendency for the smaller values X to be

paired with the larger values of Y [42].” The test is performed by selecting ρ as the

test statistic. The critical values for testing the null hypothesis are presented in the

table of quantile of the Spearman’s statistic as a function of n and p, the quantile

of the standard normal variable. That is to say the table is a measure of how ex-

treme the statistic is at a specified confidence. For a two-tailed test, reject the null

hypothesis if the test statistic is either greater than the corresponding critical value

for p = 1− α/2, or less than the symmetrical critical value for p = α/2.
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Hit Ratio.

The hit ratio, proposed by [35], is defined as the percentage of trials a meta-learner

correctly recommends the best performing algorithm for a problem. The metric is

akin to the true positive rate, or recall of a classifying base learner. The metric is

shown in Equation 21

Rhit =

n∑
i=1

hi

n
, (21)

where n is the number of problems. hi is 1 if the recommendation is correct and

0 otherwise.
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III. Methodology

This section communicates the methodology to solve the problem statement: “cre-

ate an algorithm selection technique for human analysts that also develops the the-

oretical intuition for meta-learners.” Notably, the criteria was identified prior to de-

signing the solution and prior to performing any experimentation. This methodology

includes a criteria and an outline of the experimental strategy.

3.1 Criteria

A criteria was defined to include all of the desirable traits of a solution to the

problem statement. Alternative solutions are referred to as frameworks of the algo-

rithm selection problem. Therefore, the following traits define the criteria for the

algorithm selection framework under development:

Framework.

• Leverages a taxonomy. The framework must discriminate machine learning

techniques by both their intended applications and their internal mechanics.

The framework therefore must interface with a comprehensive taxonomy con-

taining all the algorithms under consideration.

• Maps to specific recommendation(s). The framework should produce a rank

ordered list of the specific algorithms appropriate for each problem, not just

a set of acceptable choices or a statement of guidance. The framework is not,

however, required to set hyper-parameters or provide tuning guidance. Therefor

it is acceptable to consider default parameter settings for all algorithms.

• Recommended algorithm performs well. The framework must recommend algo-

rithms that are applicable to the intended task. Furthermore, the recommended
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algorithms are expected to produce high quality results according to an ap-

propriate performance metric such as recall, MSE, or accuracy. An excellent

recommendation is defined as one which produces results within 5 percent of

the best observed performance. A good recommendation is within 10 percent; a

satisfactory recommendation is within 20 percent, and a poor recommendation

is not within percent of the best observed performance.

• Rigorous and repeatable process. The framework should remove subjectivity

from the algorithm selection process. The framework should produce the same

recommendation each time it is implemented on a particular data set. The

recommendation should be made based on known information, not the practi-

tioner’s intuition.

• Fast implementation. The time required for an analyst to perform the the

algorithm selection should be negligible in the scope of the project. Specifically,

the recommendation time must be an order of magnitude shorter in duration

than the analysis algorithm.

• Aids a human analyst. The framework should be easy for a human analyst to

implement without any ancillary training. It should mitigate the conventional

trial and error procedure for algorithm selection.

• Supports meta-learning problem. The algorithm selection framework must em-

ploy a logical decision process in the most efficient way possible. Studying this

logic will provide insight onto the logic of a black box meta-learner may be

using to recommend an algorithm. Therefore, if advantageous, aspects of the

framework can be incorporated into a meta-learner hybrid model.
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Taxonomy.

• Distinguishes techniques by application. The taxonomy must describe algo-

rithms by application as one aspect of providing a quick and intuitive reference

for algorithm selection.

• Distinguishes techniques by mechanism. The taxonomy must characterize al-

gorithms by their mathematical model to provide information for predicting

algorithm performance. The analyst may assess the compatibility of the math-

ematical model with aspects of the problem characterization.

• Distinguishes techniques by training style. The taxonomy shall identify the

compatible training styles for each technique to inform whether the training

data may be provided in a single event, or in successive events.

• Addresses data characteristics. A characterization of the feasible, and ideal

data features that are compatible for each technique will aid the alignment

of techniques to problems. Proper alignment will facilitate good performance

metrics.

• Hierarchical structure. A hierarchically structured taxonomy is necessary to

clearly organize the taxonomy, to encapsulate the necessary information, and

to allow growth over time.

• Comprehensive. The taxonomy must include all commonly used techniques in

order be a useful reference to the analyst.

• Expandable. The taxonomy needs to grow as new techniques emerge and as

new technique attributes are deemed necessary to characterize.

Table 1 compares the strengths and weaknesses of several existing frameworks of

analytic against the criteria above. A green colored box indicates the criterion is
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fully met; yellow indicates a criterion is partially met; red indicates that a criterion

is poorly met or not addressed at all. Note that none of the frameworks provide

a sufficiently rigorous and repeatable recommendation; none of the frameworks aid

the understanding of meta-learning recommendation systems. The Analytics Body

of Knowledge Framework leverages a taxonomy of analytical techniques which leads

the analyst to only consider a subset of applicable techniques for each problem. This

often results in analysis that properly solves the correct problem, but does not nec-

essarily identify the best performing technique. The Analytics Body of Knowledge

Framework did not, however remove subjectivity from the recommendation, and was

therefore not repeatable. The framework presented in the Field Guide provides the

most guidance for matching a problem to technique. Still, this guidance is largely

unspecific, lacking quantitative metrics. Conflicting recommendations could be gen-

erated from this guidance depending on its interpretation. Further, the framework

from the Field Guide occasionally leads the analyst to techniques which would not

be appropriate for the analysis problem.

Table 2 compares two existing taxonomies of analysis techniques. Neither of the al-

ternatives sufficiently categorize techniques by both their application and their mech-

anism. The taxonomies do properly address learning style. Finally, the taxonomies

do not cover a comprehensive scope of all relevant analysis techniques in the universe

of analysis.

3.2 Proposed Framework

The proposed framework is derived from discussions regarding how most analysts

select a machine learning algorithm for a problem. Evidently, many analysts become

comfortable with only a small fraction of the available analysis techniques. They often

neglect to consider all appropriate algorithms for a problem. Therefore, the framework
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Table 1. Comparison of the frameworks reviewed

is built to guide the analyst to the correct technique agnostic to any personal bias.

This approach follows from the stated criteria. The framework should be implemented

within the analysis process in order to identify the appropriate analytical approaches

and recommend specific analytical techniques. Figure 2 shows that within the analysis

process, four factors are identified which drive the analytical approach and analytical

technique selection. They are the input to the algorithm selection framework.

Characterizing the Problem.

The framework is a mechanism to characterize an analysis problem and to deter-

mine the algorithms that best matches the problem characterization. The four factors

each drive analytical approach selection and analytical technique selection in a differ-

ent way. The factor assigned task pertains to the problem provided by management
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Table 2. Comparison of the taxonomies reviewed

or a decision maker. The analyst must decipher the intent of the assignment from the

lexicon of the manager into specific analytical terms, which are listed under the Task.

This list of terms, called considerations is shown in Figure 3 for each factor. The

considerations for the factor data describe the different formats analysts commonly

receive data for analysis problems. The data factor is important because it relates to

the problem’s compatibility with the mathematical mechanics of the analysis tech-

nique. Likewise, the considerations for the resources factor help the analyst identify

which algorithms are compatible with the available resources. Finally, the factor of

analyst skill characterizes the human analyst’s abilities, which also impacts algorithm

selection. Education level is used as a coarse proxy for analyst skill level [19]. In re-

ality, work experience and problem solving skills are also relevant considerations but

they are not addressed in this framework due to the subjectivity involved in capturing
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Figure 2. The factors identified in this this research are superimposed with the stages of
analysis which they impact, ie. determine analysis approach and determine technique

them. The analyst should refer to Figure 3 to evaluate and record the considerations

for each factor prior to beginning step 1.

Figure 3. The considerations are shown for each factor which drives analytical approach
and analytical technique selection
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Step 1: Map Problem to Category and Approach.

Step 1 leverages information from the problem characterization to identify the

appropriate analytical approaches. Each consideration selected from the assigned

task factor maps to one or more categories of analysis. The categories of analysis

describe the general goal of the analysis problem [19]. Each category of analysis can

be implemented by certain analytical approaches. The analytical approach a technique

class referring to the specific type of response the techniques produce. Therefore,

the framework leverages a hierarchical taxonomy that groups techniques grouped by

both categories of analysis and analytical approaches. Figure 4 shows the mapping

from assigned task to category of analysis, and the mapping of category of analysis

to analytical approach. An alternate representation is shown in Table 3 where the

colored boxes indicate compatibility between the category of analysis and analytical

approach.

Figure 4. The 11 possible assigned tasks all into one or more of the categories of
analysis which are listed on the far left. Each category of analysis maps to one or more
analytical approach on the far right.
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Table 3. The matrix view of mapping from category of analysis to analytical approach.

An excerpt of the proposed taxonomy is presented in Figure 5. The taxonomy is

built with an object-oriented structure to promote flexibility and expandability. As

an example, techniques are shown within the regression and classification analytical

approaches. The text predictive and descriptive appears at the bottom edge of the

regression panel to indicate that regression techniques produce results suitable for

either of these two categories of analysis. Applicable considerations are listed below

each factor on the panel for each technique. Compatible training styles are listed to

the right of the technique name. The object oriented structure allows new techniques

to be easily added and new attributes to be included as necessary.

Step 2: Score Techniques.

The framework thus far identifies a subset of techniques which are compatible for

the problem according to application. Next, the framework leverages the remaining

three factors data, resources and experience to discern aspects of technique com-
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Figure 5. A portion of the proposed taxonomy is hi-lighted to show the structure of
the taxonomy

patibility relating to the mechanics of the mathematical model. The techniques are

ranked ordered by level of compatibility for each of the remaining three factors. The

most preferred technique for each factor is assigned the highest ordinal score and ties

are resolved by providing the average score of the tied scores.

Step 3: Rank Recommendations.

The final recommendation score s(j) for each technique j is shown below as the

product of the score s
(j)
k for each factor k. The weights of the scores for each factor

are assumed equivalent for this study. The techniques are then ranked by their final

score where the highest number is most preferred.

s(j) =
3∏

k=1

s
(j)
k (22)

A decision tree is used to assign the ordinal scores for each technique within each

factor for data and resources. The decision tree is built from features of the data.
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Notably, the features pertaining to data also impact the compatibility of techniques in

respect to resources. Therefore, it is justified to use the same decision tree, Figure 6,

to adjudicate the scores for both factors. A separate decision tree could be produced

for each factor, however, it is not necessary to prove the concept. The ranking logic for

analyst skill is omitted from this study due to analysis automation, which is discussed

in Chapter 4.

Figure 6. Decision tree used to assign a preference rank for each technique in regards
to the data factor
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3.3 Data Sets

The experimental process is performed using nine unique data sets. The data sets

are pre-processed such that a binary target was placed into the first column. The

following list outlines the assigned task for each data set and references the source.

1. Heart: Predict presence of heart disease from 13 predictor variables [44]

2. Framingham: Predict presence of heart disease in the Framingham study from

15 predictor variables [45]

3. Spam: Predict if an email is spam based on six predictor variables [46]

4. Loan: Predict whether a consumer purchases a loan from Thera Bank based on

12 predictor variables [47]

5. PMESII: Predict whether the sumintensityofwar metric surpassed a threshold

of five for each country each year. Data is a compilation of AFIT’s Political

Military Economic, Social, Information, Infrastructure (PMESII) data set [48],

the Correlates of War data set[49], and the Armed Conflict Data data set

totaling 408 predictor variables

6. Cancer: Predict whether a patient has breast cancer from 30 predictor variables

collected in a fine needle aspirate procedure [50]

7. Urinalysis: Predict whether a patient is experiencing formation of calcium ox-

alate crystal based on six predictor variables [51]

8. Colleges: Data used to predict whether a college is public or private based on

17 predictor variables [52]

9. Election: Data used to predict the electoral vote for each state in the United

States based on five predictor variables [53]

39



www.manaraa.com

Efficiency.

Recall efficiency is presented as a single value to assess the success of a recommen-

dation for the metric of recall. Equation 13 demonstrates that the recall efficiency

is calculated as the recall of the top recommended technique divided by the recall of

the technique with the best observed recall. A technique obtains a recall efficiency of

100 percent if it generates the best observed recall. Otherwise, the recall efficiency

for a technique is greater than 0 percent and less than 100 percent, commensurate to

its observed recall.

ER =
RbestRec

Rbestobs

(23)

3.4 Software and Packages

This research is implemented entirely within the Spyder 3.1.2 integrated develop-

ment environment using the Python 3.6.0 kernel. The open source Python library

sci-kit learn is used to access the machine learning functions DecisionTreeClassifier,

RandomForestClassifier, MultinomialNB with MultinomialNB, svm.SVC, SVR, clas-

sification report, and mean squared error. Additional functions were used for data

pre-processing. The experimental design section will detail how these functions were

implemented as classifiers.

Workstation Specifications.

A Dell Precision 5540 mobile workstation was used for all computations and anal-

ysis in this study. The workstation ran Windows 10 Enterprise and has an intel

i9-9980 CPU running at 4.8GHz
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IV. Experimental Results and Analysis

4.1 Experimental Results

The recommendation system is implemented on nine binary classification data

sets according to the framework described in Chapter 3. Problem characterization

is performed by the research team for each of nine data sets by reading the data set

description and adjudicating an assigned task to each data sets. In step 2, all nine

data sets are mapped to predictive category of analysis. Therefore, the analytical

approaches assigned to each data set are regression, classification, and multivariate.

Figure 7 shows that scores of one through five are assigned to the factors data and

resources in accordance with the decision tree shown in Figure 6. All techniques are

assigned the same score for analytical skill, effectively nullifying the factor. All fac-

tors are weighted equally for the final recommendation score. The eligible analytical

techniques were ranked from one, highly recommended, to five, least recommended,

based on their final recommendation score. Figure 7 reveals that the taxonomy is not

comprehensive. The four classification techniques, two multivariate techniques, and

two regression techniques used in this study are representative of how the framework

is applied to an expandable taxonomy of techniques.
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Figure 7. Step 2, scoring, is performed for each factor. Step 3, overall technique
ranking, is performed for the Heart data set.

Table 4 reports the framework’s recommendations and several analysis metrics.

The first line of Table 4 provides the recommended ranking scheme for each data

set. The rank is provided for decision tree, random forest, Näıve Bayes, support

vector machine, and support vector regression techniques in order, as these were the

recommended techniques for each problem. The next line reports the rank scheme

for each data set according to the observed recall. The Spearman’s coefficient of rank

correlation between the two rank schemes is reported in the next line of the table.

Eight data sets demonstrate positive correlation and one data set demonstrates a

negative correlation; none of these figures are statistically significant using a two

tailed hypothesis test and 5 percent significance. The metric of correlation describes

the consistency in ranking for both high performing and low performing techniques.

Since in practice, the framework need only implement the top performing technique,

the correlation for lower rankings is immaterial. Therefore, the performance of the

recommendation system is best understood by assessing the performance of the top

recommendation. Accordingly we attribute greater consideration to the True Hit

Ratio which conveys that a perfect agreement between top recommended and top

performing techniques is observed for four of nine data sets. Additionally, the “The

Good Hit Ratio” conveys a good (or better) top recommendation for seven of nine
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data sets. The average recall efficiency for top the recommendation is reported “poor”

as 79 percent, though this figure is skewed downward by two extremely low recall

efficiencies. The worst recall efficiency is recorded for the Spam data set for which

the Näıve Bayes algorithm is the most highly recommended technique and also the

worst performing. Interestingly, Näıve Bayes is a Pareto efficient solution for the

Spam data set when considering the secondary metric of run time. Three of nine

recommendations are Pareto efficient. Finally, run time is reported in Table 4 for

the top recommended technique as well as for the technique with the best observed

recall.
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Two plots are generated to visually convey the performance of the recommendation

system on each data set. The bar plots, Figures 8, 10, and 12, compare mean recall

for each of the recommended techniques. The most highly recommended technique

is represented with a red bar and all other recommended techniques are shown in

blue. The 95 percent two tailed confidence interval for mean recall is represented

with whiskers emanating from the top of the bar.
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Figure 8. Mean recall for the Heart data set. SVR is a hit.

Figure 9. Mean recall and mean run time for the Heart data set. SVR is Pareto
efficient because it dominates recall.
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Figure 10. Mean recall for the Spam data set. Näıve Bayes is the top recommendation
and produces the worst recall of all recommendations.

Figure 11. Näıve Bayes is a Pareto efficient solution because it dominates run time.
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Figure 12. Mean recall for the Election data set. Näıve Bayes is a hit.

Figure 13. Despite producing the ideal recall and a fast run time, the recommended
technique, Näıve Bayes, is not a Pareto efficient solution
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The multi-objective plots, Figures 9, 11, and 13, present the primary objective

maximize recall plotted against the secondary objective minimize run time. The most

highly recommended technique is identified with a red dot; all other recommended

techniques are represented with a blue dot. If a Pareto frontier exists, it is represented

as a grey line. Otherwise, one solution is shown that dominates both objectives.

The recall plot and the multi-objective plot of the heart data set are shown in Fig-

ure 8 and Figure 9 respectively. This set of results demonstrates an excellent overall

outcome from the recommendation framework. In Figure 8 the bar corresponding

to SVR is red to indicate it is the top recommended analysis technique. The height

indicates SVR generated better recall than all other recommendations. The whiskers

at the top of the bar indicate the 95 percent confidence interval about the mean of

recorded recall in 20 trials. Figure 9 represents SVR as a red point, also to indicate

it as the top recommended technique for the Heart data set. Since no technique

outperforms SVR on both objectives, SVR is Pareto efficient. The Pareto frontier is

shown in gray, connecting each Pareto efficient recommendation.

The recall plot and the multi-objective plot of the spam data set are shown in

Figure 10 and Figure 11 respectively. These results demonstrate that the framework

does occasionally provide a poor recommendation. Here, the top recommended tech-

nique, Näıve Bayes, yields the worst recall of all recommend techniques with a recall

efficiency of just 6 percent. This recommendation is shown to be Pareto efficient in

Figure 11 due to its very low run time. Still, it is a bad recommendation.

Näıve Bayes is the top recommendation for 3/9 data sets. In two of these instances,

Näıve Bayes performed very poorly with recall efficiencies of 6 percent and 20 percent

respectively, which indicates that the ranking logic to recommend Näıve Bayes may

not be optimized.

The recall plot and the multi-objective plot of the election data set are shown in
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Figure 12 and Figure 13, respectively. For this data set, the framework succeeds in

recommending an algorithm, Näıve Bayes, with perfect recall. In fact, three of the

recommended analytic techniques exhibited excellent mean recall, and their recall

was statistically equivalent at a confidence of 95 percent using a two tail hypothesis

test. The 95 percent confidence interval for all five recommended algorithms indicate

the mean recall may be excellent. The reader may therefore ask whether the recom-

mendation framework is necessary for this data set. A posteriori it is revealed that

three of the five recommendations are excellent. Still, the framework is necessary to

systematically identify the five techniques. There is a statistical difference between

the mean recall of the top recommendation and the two worst performing recommen-

dations; this difference may be practically significant. Noting that an election model

is most useful for several states that are difficult to predict, it would behoove a news-

paper editor to call election results using the model that exhibits perfect true positive

rate and an imperfect false negative rate. It is always preferred to recommend the

best performing technique even as several perform generally well.

Interestingly, several data sets which yield hits are not Pareto efficient if multiple

techniques reflect perfect recall. This occurs if the recommendation is dominated by

other solutions for run time. The effect is observed for the Loan data set and the

Election data set in Figures 17 and 13, respectively. In both cases the recall and run

time for the recommended technique are not practically different from the dominating

technique. Charts depicting the results of all other data sets are included in Appendix

B.

4.2 Evaluation of Taxonomy to Criteria

The taxonomy included in this study demonstrates that a recommendation frame-

work benefits from leveraging a taxonomy. Table 5 shows it evaluated generally well
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against the taxonomy criteria presented in Chapter 3 and serves the intended purpose

within the scope of this research. The taxonomy excels at distinguishing algorithms

by intended application. It exhibits a minor shortcoming of distinguishing techniques

by mechanism. While the taxonomy does address the spirit of this criteria by charac-

terizing each technique for compatibility with data, skill, and resources of a problem,

there is no specific classification of techniques by mechanism. The taxonomy receives

full credit for addressing the compatibility of data with each technique through its

analysis of data meta-features. The taxonomy does specify applicable training style

for each technique. The taxonomy is constructed with a hierarchical relationship

between characteristics. An object oriented structure places each technique within

an analytic approach, which in turn is mapped to a broader category of analysis.

Attributes can be assigned to objects at any level of the hierarchy. The example used

in this study is not comprehensive and must be expanded to incorporate all prevalent

analysis techniques. Ultimately, the proposed taxonomy serves as a template and

proof of concept. Fortunately, the taxonomy can be easily expanded in regards to

breadth and depth. Future revisions of the taxonomy should include more techniques

and more attributes for each technique. In particular, the taxonomy must be adapted

to include techniques other than machine learning algorithms.
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Table 5. Comparison of the reviewed taxonomies to the proposed

4.3 Evaluation of the Framework

Analysis of Results.

The novel framework demonstrates several major improvements over existing

frameworks. It successfully meets the intent of each criteria except recommenda-

tion performance. Table 4 shows the framework performs inconsistently across the

data sets. On average, the Spearman’s coefficient of rank correlation demonstrates a

slight positive correlation. The highest level of utility for an algorithm recommenda-

tion system is to correctly rank order compatible recommendations by performance.

This is a difficult task to optimize. We observe the framework leverages predictive

information but the decision logic is not optimized. Therefore, the criterion “per-

forms well” is partially met. The recommendations reflect an average recall efficiency

of 79 percent, which is considered poor. Notably, the recommendations for seven of

nine data sets have at least good recall efficiencies. Six of nine have excellent re-

call efficiencies. The framework is beneficial even when it does not produce a hit.
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The framework consistently filters techniques that are incompatible with the problem

characterization. Further, the framework identifies five viable options, some of which

perform excellently.
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Evaluation of Framework to Criteria.

Table 6. Evaluation of Framework criteria for three reviewed frameworks and the
proposed framework.
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V. Conclusion

The proposed framework measures well against the stated criteria. The frame-

work successfully filters inadequate analysis techniques from each problem and rec-

ommended good techniques in most cases. Although the framework’s rank scheme

of recommended techniques is positively correlated with the ranking of best observed

techniques, the correlation is low. Fundamentally, the meta-data and user input col-

lected by the framework does contain information capable of consistently predicting

the a good analysis technique for a problem. The process of problem characterization

fits well into the framework but does require further refining. The decision tree used

to generate rank schemes provided intelligible recommendation logic. The factor of

analytical skill proved to be of no importance due to the automation incorporated

into the framework. Future work should use the Gini criterion to optimize the rec-

ommendation logic and should expand the scope of techniques into other types of

analysis problems. The results of this proposed study should be leveraged in order

to better understand the behavior of meta-learning models. Aspects of the recom-

mendation framework, such as technique filtering process, may be incorporated into

future meta-learning ventures.
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VI. Appendix A

Table 7 lists the AFIT theses referenced in the literature review of this paper.

Table 7. AFIT theses reviewed during research

Thesis Title Author Advisor
Spectral Textile Detection in the
VNIR/SWIR Band

A James A. Arneal,
Second Lieutenant

Lt Col Jeffrey D Clark, PhD

A Metamodel Recommendation
System Using Meta-learning

Megan K. Woods, CTR Professor Jeffery Weir
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VII. Appendix B
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Figure 14. Mean recall for the Framingham data set

Figure 15. Mean recall and mean run time for the Framingham data set
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Figure 16. Mean recall for the Loan data set

Figure 17. Mean recall and mean run time for the Loan data set
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Figure 18. Mean recall for the PMESII data set

Figure 19. Mean recall and mean run time for the PMESII data set
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Figure 20. Mean recall for the Cancer data set

Figure 21. Mean recall and mean run time for the Cancer data set
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Figure 22. Mean recall for the Urinalysis data set

Figure 23. Mean recall and mean run time for the Urinalysis data set
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Figure 24. Mean recall for the Colleges data set

Figure 25. Mean recall and mean run time for the Colleges data set
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VIII. Appendix C

8.1 Ranking Recommended Techniques for Data Factor

Characterize the Data Set

#Read in data s e t
f i l ename=f i l e n a m e s t r
data = pd . r ead c sv ( f i l ename )

#Assign response v a r i a b l e as y
f i r s t c o l n a m e=l i s t ( data ) [ 0 ]
y=data [ [ f i r s t c o l n a m e ] ]
de l data [ f i r s t c o l n a m e ]

#Minimax norma l i za t i on o f data
min max scaler = p r e p r o c e s s i n g . MinMaxScaler ( )
f i n a l d a t a = min max scaler . f i t t r a n s f o r m ( data )

#Get n and m
n ,m =np . shape ( f i n a l d a t a )

i f n>= 10ˆ3 :
b i g s e t=True

e l s e :
b i g s e t=False

i f m>= 10 :
many vars=True

e l s e :
many vars=False

#Get MajVarsCat
type vec t=np . z e ro s ( ( 1 , m) )

f o r i in range (0 , m) : #Py index ing to generate num reps i t e r a t i o n s

i f data . i x [ : , i ] . nunique ( )>=12:
type vec t [ 0 , i ]=1

i f np . mean( type vec t ) >=.5: #t e s t s whether the major i ty o f
columns have many l e v e l s
d a t a c a t e g o r i c a l = True

e l s e :
d a t a c a t e g o r i c a l = Fal se

#Get Condit ion
i f LA. cond ( f i n a l d a t a )>=10ˆ5:

i l l c o n d=True
e l s e :

i l l c o n d=False
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Assign Preference Ranks to Techniques

#Generate Recommendation

#Big s e t ( Right s i d e o f t r e e )
i f b i g s e t==True and many vars==True and d a t a c a t e g o r i c a l==True

and i l l c o n d == True :
Ranks =[3 , 1 , 2 , 4 , 5 ] #RF NB DT SVM SVR

e l i f b i g s e t==True and many vars==True and d a t a c a t e g o r i c a l==False
and i l l c o n d == True :
Ranks =[4 , 3 , 2 , 5 , 1 ] #SVR RF NB DT SVM

e l i f b i g s e t==True and many vars==True and d a t a c a t e g o r i c a l==False
and i l l c o n d == True :
Ranks= [ 3 , 1 , 2 , 4 , 5 ] #RF NB DT SVM SVR

e l i f b i g s e t==True and many vars==True and d a t a c a t e g o r i c a l==False
and i l l c o n d == False :
Ranks= [ 3 , 2 , 1 , 4 , 5 ] #NB RF DT SVM SVR

#Small s e t ( Le f t s i d e o f t r e e )
e l i f b i g s e t==False and d a t a c a t e g o r i c a l==True :# and many vars==

True #and i l l c o n d == False :
Ranks= [ 3 , 2 , 5 , 1 , 4 ] #SVM RF DT SVR SVM SVR

e l i f b i g s e t==False and d a t a c a t e g o r i c a l==False : # and many vars==
True #and i l l c o n d == False :
Ranks= [ 4 , 3 , 5 , 2 , 1 ] #SVR SVM RF DT NB

e l s e :
Ranks= [ 4 , 2 , 1 , 3 , 5 ] #SVR SVM RF DT NB

rank array = Ranks

Return Object of Rank Scheme and Data Characterization

#Return an ob j e c t that r e p o r t s c h a r a c t e r i z a t i o n and recommended
rank scheme f o r the data s e t

c l a s s r e s u l t :
de f i n i t ( s e l f , ranks , ranks df , b i g s e t , manyvars ,

c a t e g o r i c a l , i l l c o n d ) :
s e l f . ranks = ranks
s e l f . ranksdf = Ranks
s e l f . b i g s e t = b i g s e t
s e l f . manyvars = manyvars
s e l f . c a t e g o r i c a l = c a t e g o r i c a l
s e l f . i l l c o n d = i l l c o n d

r e s u l t o b j = r e s u l t ( rank array , Ranks , b i g s e t , many vars ,
d a t a c a t e g o r i c a l , i l l c o n d )

re turn r e s u l t o b j
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Split Data to Training and Test Sets

#Read in new data s e t
data = pd . r ead c sv ( f i l e p a t h s t r )

#Assign response v a r i a b l e as y
f i r s t c o l n a m e=l i s t ( data ) [ 0 ]
y=data [ [ f i r s t c o l n a m e ] ]
de l data [ f i r s t c o l n a m e ]

#Minimax norma l i za t i on o f data
min max scaler = p r e p r o c e s s i n g . MinMaxScaler ( )
f i n a l d a t a = min max scaler . f i t t r a n s f o r m ( data )

# %% Enter loop f o r each rep
f o r i in range (1 , num reps+1) : #weird python index ing w i l l generate

num reps i t e r a t i o n s
seed = 18+ i # f i x random seed f o r r e p r o d u c i b i l i t y
np . random . seed ( seed )

#S p l i t the f i n a l data in to t r a i n / t e s t
x f i n a l t r a i n , x f i n a l t e s t , y f i n a l t r a i n , y f i n a l t e s t =\
t r a i n t e s t s p l i t ( f i n a l d a t a , y , t e s t s i z e =0.2 , random state=

seed , s t r a t i f y=y )
y f i n a l t r a i n=y f i n a l t r a i n . va lue s . r a v e l ( )

#Enter mode l l ing module

Create Metamodels of Data Set

pr in t ( ' 1/5 : Creat ing Dec i s i on Tree C l a s s i f i e r ' , f l u s h=True )
r=1 #Index number o f technique
s t a r t d t = time . time ( ) #Record time Dec i s i on Tree beg ins

# I n s t a n t i a t e a D e c i s i o n T r e e C l a s s i f i e r
d t f i n a l = D e c i s i o n T r e e C l a s s i f i e r ( random state=seed )

#d e f a u l t s : max depth d e f a u l t i s u n t i l pure . d e f a u l t c r i t e r i o n i s
g i n i

# Fit dt to the t r a i n i n g s e t
d t f i n a l . f i t ( x f i n a l t r a i n , y f i n a l t r a i n )

#Pred i c t the c l a s s o f each obse rvat i on o f a datase t
y pred f ina l DT = d t f i n a l . p r e d i c t ( x f i n a l t e s t )

#Record time d e c i s i o n t r e e completes
now=time . time ( )
durat ionmin dt = round ( ( now−s t a r t d t ) /60)
d u r a t i o n s e c d t = round ( ( now−s t a r t d t ) %60)
durat ion mat [ r−1, i −1]=(now−s t a r t d t ) #seconds

p r in t ( 'The Dec i s i on Tree model and p r e d i c t i o n s have been generated
in ' , ' %2.2d :%2.2d ' % ( durationmin dt , d u r a t i o n s e c d t ) , f l u s h=
True )
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